login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest triangular number with exactly n anagrams that are triangular numbers.
1

%I #13 Feb 18 2024 13:28:40

%S 0,120,4095,36046,147153,219453,1021735,1053426,104653,10149765,

%T 10294453,10348975,100486576,10725396,103428153,20759346,12347965,

%U 100174935,129548656,102968425,104697685,102925378,160249753,123865930,126047503,102538360,224073865

%N Smallest triangular number with exactly n anagrams that are triangular numbers.

%H Michael S. Branicky, <a href="/A166596/b166596.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..46 from Chai Wah Wu)

%e n=1, {0} (triangular number with no nontrivial anagram)

%e n=2, {120,210} (two anagrams of triangular numbers)

%e n=3, {4095,4950,9045} (three anagrams of triangular numbers)

%e n=4, {36046,43660,46360,66430} (four anagrams of triangular numbers)

%e n=5, {147153,375411,435711,713415,741153}

%e n=6, {219453,243951,432915,493521,539241,943251}

%e n=7, {1021735,1710325,2310175,2375110,3201715,5312170,7321051}

%e n=8, {1053426,1345620,1360425,1405326,1624503,2465310,5643120,6503421}

%e n=9, {104653,135460,354061,403651,406351,431056,465130,534061,634501}

%e n=10, {10149765,14609715,15149760,16974051,17461095,17609145,41509716,41591760, 41756091,61710495}.

%o (Python)

%o from math import isqrt

%o from collections import Counter

%o from itertools import count, islice, combinations_with_replacement as mc

%o def tris(d): # generator of triangular numbers with d digits

%o ilb, lb, ub = isqrt(2*10**(d-1))-1, 10**(d-1), 10**d

%o if d == 1: yield 0

%o for i in count(ilb):

%o t = i*(i+1)//2

%o if t < lb: continue

%o elif t >= ub: break

%o yield t

%o def agen(): # generator of sequence terms

%o n, adict = 1, dict()

%o for d in count(1):

%o c = Counter("".join(sorted(str(t))) for t in tris(d))

%o for t in tris(d):

%o v = c["".join(sorted(str(t)))]

%o if v not in adict: adict[v] = t

%o while n in adict: yield adict[n]; n += 1

%o print(list(islice(agen(), 46))) # _Michael S. Branicky_, Feb 18 2024

%Y Cf. A034291 Triangular numbers that have some nontrivial permutation of digits which is also triangular.

%K base,nonn

%O 1,2

%A _Zak Seidov_, Oct 17 2009