login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of peaks at odd level in all Dyck paths of semilength n with no UUU's and no DDD's, (U=(1,1), D=(1,-1)). These Dyck paths are counted by the secondary structure numbers (A004148).
4

%I #11 Jul 26 2022 15:05:54

%S 0,1,2,5,12,29,72,181,460,1178,3030,7815,20188,52193,134992,349205,

%T 903398,2337135,6046310,15642402,40469824,104708914,270937964,

%U 701129755,1814581514,4696886211,12159165336,31481922733,81523933604,211143257951

%N Number of peaks at odd level in all Dyck paths of semilength n with no UUU's and no DDD's, (U=(1,1), D=(1,-1)). These Dyck paths are counted by the secondary structure numbers (A004148).

%H G. C. Greubel, <a href="/A166292/b166292.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{k=0,..,n} k*A166291(n,k).

%F G.f.: G=[z^2 + 3z - 2 + (z^4 + z^3 - z^2 - 4z + 2)g(z)]/[(1 - z - z^2)(1 - z - z^2 - 2z^3*g(z)], where g=g(z) satisfies g = 1 + zg + z^2*g + z^3*g^2.

%F a(n) ~ sqrt(55 + 123/sqrt(5)) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+5/2)). - _Vaclav Kotesovec_, Mar 20 2014

%F Equivalently, a(n) ~ phi^(2*n + 5) / (4 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Dec 07 2021

%F D-finite with recurrence -(n+3)*(12263959*n-453745718)*a(n) +(-12263959*n^2-1898630196*n-3269930920)*a(n-1) +2*(201299201*n^2-33603137*n-693679841)*a(n-2) +4*(-226348358*n^2+2057096353*n-415271997)*a(n-3) +(282398701*n^2-4452810911*n+4125507350)*a(n-4) +(46943591*n^2-3487699726*n+8812781352)*a(n-5) +4*(214523727*n^2-2147935054*n+5837738425)*a(n-6) +2*(-101430217*n^2+3147700949*n-14145800266)*a(n-7) -5*(76453537*n-336152052)*(n-7)*a(n-8) +(n-8)*(126836791*n-1033250150)*a(n-9)=0. - _R. J. Mathar_, Jul 26 2022

%e a(3)=5 because the paths (UD)(UD)(UD), (UD)UUDD, UUDD(UD), and UUDUDD have 3 + 1 + 1 + 0 peaks at odd level (shown between parentheses).

%p g := ((1-z-z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^3: G := (z^2+3*z-2+(z^4+z^3-z^2-4*z+2)*g)/((1-z-z^2)*(1-z-z^2-2*z^3*g)): Gser := series(G, z = 0, 35): seq(coeff(Gser, z, n), n = 0 .. 30);

%t CoefficientList[Series[(x^2+3*x-2+(x^4+x^3-x^2-4*x+2)*((1-x-x^2-Sqrt[1-2*x-x^2-2*x^3+x^4])*1/2)/x^3)/((1-x-x^2)*(1-x-x^2-2*x^3*((1-x-x^2-Sqrt[1-2*x-x^2-2*x^3+x^4])*1/2)/x^3)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)

%Y Cf. A004148, A166291, A166293, A166294

%K nonn

%O 0,3

%A _Emeric Deutsch_, Oct 12 2009