Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 02 2016 00:24:33
%S 1,-8,80,-656,6416,-53648,515600,-4378256,41501456,-356735888,
%T 3344840720,-29029824656,269858356496,-2360005731728,21789807399440,
%U -191710220083856,1760576352843536,-15563712198881168
%N a(n) = (8^n+16*(-9)^n)/17.
%H G. C. Greubel, <a href="/A166157/b166157.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1, 72).
%F a(n) = 72*a(n-2)-a(n-1), a(0)= 1, a(1)= -8, for n>1.
%F G.f.: (1-7x)/(1+x-72*x^2).
%F a(n)= Sum_{k, 0<=k<=n} A112555(n,k)*(-9)^k.
%F E.g.f.: (1/17)*(exp(8*x) + 16*exp(-9*x)). - _G. C. Greubel_, May 01 2016
%t LinearRecurrence[{-1,72},{1,-8},20] (* _Harvey P. Dale_, Jun 23 2012 *)
%o (PARI) a(n)=(8^n+16*(-9)^n)/17 \\ _Charles R Greathouse IV_, May 02 2016
%Y Cf. A166035, A166036, A166149, A166152, A166153.
%K easy,sign
%O 0,2
%A _Philippe Deléham_, Oct 08 2009