login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (7-(-5)^n)/6.
2

%I #16 Sep 03 2022 21:04:07

%S 1,2,-3,22,-103,522,-2603,13022,-65103,325522,-1627603,8138022,

%T -40690103,203450522,-1017252603,5086263022,-25431315103,127156575522,

%U -635782877603,3178914388022,-15894571940103,79472859700522

%N a(n) = (7-(-5)^n)/6.

%H G. C. Greubel, <a href="/A166122/b166122.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-4,5).

%F a(n) = 5*a(n-2) - 4*a(n-1), a(0)= 1, a(1)= 2, for n>1.

%F a(n) = 7-5*a(n-1), a(0)=1.

%F a(n) = a(n-1)+(-5)^(n-1), a(0)=1.

%F O.g.f.: (1+6*x)/(1+4*x-5*x^2).

%F E.g.f.: (7*exp(x)-exp(-5*x))/6.

%t LinearRecurrence[{-4,5},{1,2},30] (* _Harvey P. Dale_, Mar 10 2016 *)

%t Table[(7 - (-5)^n)/6, {n, 24}] (* or *)

%t CoefficientList[Series[(1 + 6 x)/(1 + 4 x - 5 x^2), {x, 0, 24}], x] (* _Michael De Vlieger_, Apr 27 2016 *)

%Y Cf. A084222, A084247, A166114.

%K sign,easy

%O 0,2

%A _Philippe Deléham_, Oct 07 2009