The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166105 Quadratic recurrence from Sylvester's sequence, but starting with a(0)=1 and a(1)=2. 3
 1, 2, 4, 14, 184, 33674, 1133904604, 1285739649838492214, 1653126447166808570252515315100129584, 2732827050322355127169206170438813672515557678636778921646668538491883474 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the size of the set S(n) constructed recursively as follows: Let S(1) = {a,b} and let P(S) be the set of pairs (s,t) where s,t are members of S and s not equal to t. We define S(n+1) as the union of S(n) and P(S(n)). - David M. Cerna, Feb 07 2018 LINKS David M. Cerna, Table of n, a(n) for n = 0..12 FORMULA Sum_{n>=0} 1/a(n) = 1.82689305142092757947757234878575... (compare with Sum_{n>=0} 1/A000058(n) = 1). a(n) ~ c^(2^n), where c = 1.385089248334672909882206535871311526236739234374149506334120193387331772... . - Vaclav Kotesovec, Jan 19 2015 Sum_{n>=1} arctan(1/a(n)) = Pi/4. - Carmine Suriano, Apr 07 2015 a(0)=1, a(n+1) = a(n)*(a(n)-1) + 2. - Robert FERREOL, May 05 2020 a(n) = A002065(n) + 1 = (A232806(n) + 1)/2. - Robert FERREOL, May 31 2020 MAPLE a := proc(n) option remember: if n=0 then 1 elif n=1 then 2 elif n>=2 then procname(n-1)^2 - procname(n-2)^2 + procname(n-2) fi; end: seq(a(n), n = 0..10); # Muniru A Asiru, Feb 07 2018 a:=1:A:=a : to 10 do a:=a*(a-1)+2 : A:=A, a od: print(A); # Robert FERREOL, May 05 2020 MATHEMATICA RecurrenceTable[{a[n]==a[n-1]^2-a[n-2]^2+a[n-2], a[0]==1, a[1]==2}, a, {n, 0, 10}] (* Vaclav Kotesovec, Jan 19 2015 *) PROG (PARI) a(n)=if(n<2, [1, 2][n+1], a(n-1)^2-a(n-2)^2+a(n-2)); (GAP) a:= [1, 2];; for n in [3..13] do a[n]:= a[n-1]^2 - a[n-2]^2 + a[n-2]; od; a; # Muniru A Asiru, Feb 07 2018 CROSSREFS Cf. A000058. Sequence in context: A134040 A368017 A061291 * A000370 A326941 A132531 Adjacent sequences: A166102 A166103 A166104 * A166106 A166107 A166108 KEYWORD nonn AUTHOR Jaume Oliver Lafont, Oct 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 01:37 EDT 2024. Contains 372758 sequences. (Running on oeis4.)