login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166105
Quadratic recurrence from Sylvester's sequence, but starting with a(0)=1 and a(1)=2.
3
1, 2, 4, 14, 184, 33674, 1133904604, 1285739649838492214, 1653126447166808570252515315100129584, 2732827050322355127169206170438813672515557678636778921646668538491883474
OFFSET
0,2
COMMENTS
a(n) is the size of the set S(n) constructed recursively as follows: Let S(1) = {a,b} and let P(S) be the set of pairs (s,t) where s,t are members of S and s not equal to t. We define S(n+1) as the union of S(n) and P(S(n)). - David M. Cerna, Feb 07 2018
LINKS
FORMULA
Sum_{n>=0} 1/a(n) = 1.82689305142092757947757234878575... (compare with Sum_{n>=0} 1/A000058(n) = 1).
a(n) ~ c^(2^n), where c = 1.385089248334672909882206535871311526236739234374149506334120193387331772... . - Vaclav Kotesovec, Jan 19 2015
Sum_{n>=1} arctan(1/a(n)) = Pi/4. - Carmine Suriano, Apr 07 2015
a(0)=1, a(n+1) = a(n)*(a(n)-1) + 2. - Robert FERREOL, May 05 2020
a(n) = A002065(n) + 1 = (A232806(n) + 1)/2. - Robert FERREOL, May 31 2020
MAPLE
a := proc(n) option remember: if n=0 then 1 elif n=1 then 2 elif n>=2 then procname(n-1)^2 - procname(n-2)^2 + procname(n-2) fi; end:
seq(a(n), n = 0..10); # Muniru A Asiru, Feb 07 2018
a:=1:A:=a : to 10 do a:=a*(a-1)+2 : A:=A, a od:
print(A); # Robert FERREOL, May 05 2020
MATHEMATICA
RecurrenceTable[{a[n]==a[n-1]^2-a[n-2]^2+a[n-2], a[0]==1, a[1]==2}, a, {n, 0, 10}] (* Vaclav Kotesovec, Jan 19 2015 *)
PROG
(PARI) a(n)=if(n<2, [1, 2][n+1], a(n-1)^2-a(n-2)^2+a(n-2));
(GAP) a:= [1, 2];; for n in [3..13] do a[n]:= a[n-1]^2 - a[n-2]^2 + a[n-2]; od; a; # Muniru A Asiru, Feb 07 2018
CROSSREFS
Cf. A000058.
Sequence in context: A134040 A368017 A061291 * A000370 A326941 A132531
KEYWORD
nonn
AUTHOR
Jaume Oliver Lafont, Oct 06 2009
STATUS
approved