login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166078
Expansion of (3(1-x)-sqrt(1+6x-7x^2))/(2(1-x)(1-2x)).
1
1, 0, 2, -6, 30, -150, 806, -4494, 25822, -151782, 908502, -5518590, 33933774, -210814422, 1321230150, -8343458286, 53037407166, -339111023046, 2179407749558, -14071216784862, 91225811704750, -593639364476598
OFFSET
0,3
COMMENTS
First column of inverse of Riordan array ((1+x)/(1+x+2x^2),x(1+2x)/(1+x+2x^2)).
Hankel transform is A002416. Binomial transform of A114191.
REFERENCES
A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs, Springer, 2007, p. 122
LINKS
FORMULA
G.f.: 1/(1-x+x*c(-2x/(1-x))), c(x) the g.f. of A000108.
G.f.: 1/(1-2x^2/(1-3x-4x^2/(1-3x-4x^2/(1-3x-4x^2/(1-... (continued fraction).
Conjecture: n*a(n) + 2*(2*n-5)*a(n-1) + (34-19*n)*a(n-2) + 14*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
MATHEMATICA
CoefficientList[Series[(3 (1 - x) - Sqrt[1 + 6 x - 7 x^2])/(2 (1 - x) (1 - 2 x)), {x, 0, 50}], x](* G. C. Greubel, Apr 24 2016 *)
CROSSREFS
Sequence in context: A055695 A113593 A122763 * A319365 A306946 A319104
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 06 2009
STATUS
approved