login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of nonzero values of floor (j^2/prime(n)), over 1 <= j < prime(n).
1

%I #17 Sep 07 2024 15:40:41

%S 0,1,2,4,7,9,12,14,18,23,25,30,34,36,40,45,51,53,58,62,64,70,73,79,87,

%T 90,92,96,98,102,115,119,125,127,136,138,144,150,154,159,165,167,177,

%U 179,182,184,196,208,211,213,217,223,225,235,240,246,252,254,260

%N a(n) is the number of nonzero values of floor (j^2/prime(n)), over 1 <= j < prime(n).

%H C. H. Gribble, <a href="/A165994/b165994.txt">Table of n, a(n) for n = 1..78498 (i.e., for primes < 10^6)</a>.

%F a(n) = floor(A000040(n) - sqrt(A000040(n))). - _Jon Maiga_, Nov 13 2018

%t Table[Floor[Prime[n] - Sqrt[Prime[n]]], {n, 60}] (* _Vincenzo Librandi_, Nov 13 2018 *)

%o (Magma) [Floor(NthPrime(n) - Sqrt(NthPrime(n))): n in [1..60]]; // _Vincenzo Librandi_, Nov 13 2018

%Y Cf. A165974.

%K nonn

%O 1,3

%A _Christopher Hunt Gribble_, Oct 03 2009

%E Definition rephrased by _R. J. Mathar_, Oct 09 2009