login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Nim sum of distinct consecutive pairs of Lucas Numbers.
1

%I #5 Apr 14 2021 05:23:15

%S 3,7,12,15,99,188,843,1567,1388,12823,25739,24828,203347,169975,

%T 1793132,3247295,3281747,33047100,46475931,223888367,464656140,

%U 443782407,3392754203,6320720892,28126943139,51929697511,46812642508,430604078639,875439722435,832171221180

%N Nim sum of distinct consecutive pairs of Lucas Numbers.

%C The nim sum of two numbers is the bitwise exclusive-or of the numbers. - _Andrew Howroyd_, Apr 13 2021

%H Andrew Howroyd, <a href="/A165990/b165990.txt">Table of n, a(n) for n = 0..500</a>

%F a(n) = A000032(2*n) XOR A000032(2*n+1). - _Andrew Howroyd_, Apr 13 2021

%e nim sum(2,1) = 3; nim sum(3,4)=7; nim sum(7,11) = 12; nim sum(18,29) = 15; nim sum(47,76) = 99; nim sum(123,199) = 188.

%o (PARI)

%o L(n)={fibonacci(n+1) + fibonacci(n-1)}

%o a(n)={bitxor(L(2*n), L(2*n+1))} \\ _Andrew Howroyd_, Apr 13 2021

%Y Cf. A000032.

%K nonn

%O 0,1

%A Amal Dua (amaldua1992(AT)hotmail.com), Oct 03 2009

%E Terms a(6) and beyond from _Andrew Howroyd_, Apr 13 2021