login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165983 Period 16: repeat 1,1,1,2,1,1,1,2,1,1,1,4,1,1,1,4. 0
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The numerator of the reduced fraction A061037(n+3)/A061041(2n+6).
LINKS
FORMULA
a(n) = a(n-4) - a(n-8) + a(n-12). - R. J. Mathar, Dec 17 2010
G.f.: ( -1 - x - x^2 - 2*x^3 - x^8 - x^9 - x^10 - 4*x^11 ) / ( (x-1)*(1+x)*(1+x^2)*(x^8+1) ). - R. J. Mathar, Dec 17 2010
a(4n) = a(4n+1) = a(4n+2) = 1. a(4n+3) = A165207(n).
MATHEMATICA
LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1}, {1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4}, 50] (* G. C. Greubel, Apr 20 2016 *)
PROG
(PARI) x='x+O('x^50); Vec(( -1-x-x^2-2*x^3-x^8-x^9-x^10-4*x^11 )/((x-1)*(1+x)*(1+x^2)*(x^8+1))) \\ G. C. Greubel, Sep 20 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(( -1-x-x^2-2*x^3-x^8-x^9-x^10-4*x^11 )/((x-1)*(1+x)*(1+x^2)*(x^8+1)))); // G. C. Greubel, Sep 20 2018
CROSSREFS
Cf. A064038.
Sequence in context: A161096 A214247 A211987 * A300719 A341998 A083894
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Oct 03 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 20:45 EDT 2024. Contains 371885 sequences. (Running on oeis4.)