Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Apr 18 2024 11:25:37
%S 1,2,2,6,10,18,42,78,154,314,626,1246,2498,4994,9970,19974,39930,
%T 79826,159706,319374,638714,1277530,2554978,5109854,10219922,20439714,
%U 40879234,81758854,163517466,327034514,654069866,1308139246,2616277578
%N G.f.: A(x) = exp( Sum_{n>=1} 2^n * x^n/(n*(1+x^n)) ).
%C Compare to: exp( Sum_{n>=1} x^n/(1+x^n)/n ) = Sum_{n>=0} x^(n*(n+1)/2).
%F G.f.: -1 + 2/(1+x - 2*x/(1+x^2 - 2*x^2/(1+x^3 - 2*x^3/(1+x^4 - 2*x^4/(1+x^5 - 2*x^5/(1+x^6 - 2*x^6/(1+x^7 - 2*x^7/(1+x^8 - 2*x^8/(...))))))))), a continued fraction.
%F G.f.: A(x) = (1 + x*B(x))/(1 - x*B(x)), where B(x) = (1 + x^2*C(x))/(1 - x^2*C(x)), C(x) = (1 + x^3*D(x))/(1 - x^3*D(x)), D(x) = (1 + x^4*E(x))/(1 - x^4*E(x)), ... - _Paul D. Hanna_, Jun 14 2015
%F a(n) ~ c * 2^n, where c = 2^(7/8) / EllipticTheta(2, 0, 1/sqrt(2)) = 0.6091497110662286155211146043057245512950999410185846... - _Vaclav Kotesovec_, Oct 18 2020, updated Apr 18 2024
%e G.f.: A(x) = 1 + 2*x + 2*x^2 + 6*x^3 + 10*x^4 + 18*x^5 + 42*x^6 + 78*x^7 +...
%e such that
%e log(A(x)) = 2*x/(1+x) + 2^2*x^2/(2*(1+x^2)) + 2^3*x^3/(3*(1+x^3)) + 2^4*x^4/(4*(1+x^4)) + 2^5*x^5/(5*(1+x^5)) +...
%e Also, A(x) = (1 + x*B(x))/(1 - x*B(x)), where
%e B(x) = 1 + 2*x^2 + 2*x^4 + 4*x^5 + 2*x^6 + 8*x^7 + 6*x^8 + 20*x^9 + 18*x^10 + 36*x^11 + 54*x^12 + 76*x^13 + 150*x^14 + 172*x^15 +...
%e such that B(x) = (1 + x*C(x))/(1 - x*C(x)), where
%e C(x) = 1 + 2*x^3 + 2*x^6 + 4*x^7 + 2*x^9 + 8*x^10 + 4*x^11 + 10*x^12 + 12*x^13 + 16*x^14 + 22*x^15 + 32*x^16 + 44*x^17 + 66*x^18 +...
%e such that C(x) = (1 + x*D(x))/(1 - x*D(x)), where
%e D(x) = 1 + 2*x^4 + 2*x^8 + 4*x^9 + 2*x^12 + 8*x^13 + 4*x^14 + 8*x^15 + 2*x^16 + 12*x^17 + 16*x^18 + 20*x^19 + 18*x^20 + 24*x^21 +...
%e such that D(x) = (1 + x*E(x))/(1 - x*E(x)), where
%e E(x) = 1 + 2*x^5 + 2*x^10 + 4*x^11 + 2*x^15 + 8*x^16 + 4*x^17 + 8*x^18 + 2*x^20 + 12*x^21 + 16*x^22 + 20*x^23 + 16*x^24 + 10*x^25 +...
%e such that E(x) = (1 + x*F(x))/(1 - x*F(x)), where
%e F(x) = 1 + 2*x^6 + 2*x^12 + 4*x^13 + 2*x^18 + 8*x^19 + 4*x^20 + 8*x^21 + 2*x^24 + 12*x^25 + 16*x^26 + 20*x^27 + 16*x^28 + 8*x^29 + 18*x^30 + 16*x^31 + 36*x^32 +...
%e etc.
%e The coefficients in the above functions tend toward the terms in triangle A259192.
%t nmax = 40; CoefficientList[Series[Exp[Sum[2^k * x^k / (1 + x^k)/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 18 2020 *)
%o (PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, 2^m*x^m/(1+x^m+x*O(x^n))/m)), n))}
%o for(n=0,30,print1(a(n),", "))
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=(1 + x^(n+1-i)*A)/(1 - x^(n+1-i)*A+ x*O(x^n)));polcoeff(A,n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A259192, A259273, A259274, A259275, A259276, A348902.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Oct 20 2009