login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A165931
a(1) = 1, for n > 1: a(n) = phi(sum of the previous terms) where phi is Euler's totient function.
2
1, 1, 1, 2, 4, 6, 8, 22, 24, 44, 112, 120, 176, 520, 692, 1732, 1440, 2592, 4032, 6480, 11088, 18720, 23760, 43200, 69984, 123120, 174960, 321732, 408240, 641520, 1139184, 1959552, 2799360, 5073840, 8550684, 12830400, 20820240, 36684900, 60993000, 101803608, 127591200, 231575760
OFFSET
1,4
COMMENTS
a(1) = 1, for n > 1: a(n) = phi(Sum_{i=1..n-1} a(i)) = where phi is A000010. a(n) is the inverse of partial sums of A074693(n), i.e., a(1) = A074693(1), and for n > 1, a(n) = A074693(n) - A074693(n - 1), i.e., the first differences of A074693.
LINKS
EXAMPLE
For n = 4, a(4) = phi(a(1) + a(2) + a(3)) = phi(1 + 1 + 1) = phi(3) = 2.
MAPLE
b:= proc(n) option remember; `if`(n<2, n,
numtheory[phi](b(n-1))+b(n-1))
end:
a:= n-> b(n)-b(n-1):
seq(a(n), n=1..50); # Alois P. Heinz, Oct 02 2020
MATHEMATICA
a[1] := 1; a[n_] := a[n] = EulerPhi[Plus @@ Table[a[m], {m, n - 1}]]; Table[a[n], {n, 30}]
PROG
(PARI) first(n) = {my(res = vector(n), t = 1); res[1] = 1; for(i = 2, n, c = eulerphi(t); res[i] = c; t+=c); res} \\ David A. Corneth, Oct 02 2020
CROSSREFS
Sequence in context: A230105 A045926 A045927 * A321600 A081939 A082615
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 30 2009
EXTENSIONS
Terms verified by Alonso del Arte, Oct 12 2009
More terms from David A. Corneth, Oct 02 2020
STATUS
approved