login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 6-elements orbits of S3 action on irreducible polynomials of degree n > 1 over GF(2).
2

%I #35 Oct 28 2018 17:08:58

%S 0,0,0,1,1,3,4,9,15,31,53,105,189,363,672,1285,2407,4599,8704,16641,

%T 31713,60787,116390,223696,429975,828495,1597440,3085465,5964488,

%U 11545611,22368256,43383477,84212475,163617801,318140816,619094385,1205595657,2349383715,4581280972,8939118925,17452532040,34093383807

%N Number of 6-elements orbits of S3 action on irreducible polynomials of degree n > 1 over GF(2).

%C The terms are denoted h_6 in the Michon/Ravache reference.

%D J. E. Iglesias, Enumeration of polytypes MX and MX_2 through the use of the symmetry of the Zhadanov symbol, Acta Cryst. A 62 (3) (2006) 178-194, Table 1.

%H J.-F. Michon, P. Ravache, <a href="http://dx.doi.org/10.1016/j.ffa.2010.01.004">On different families of invariant irreducible polynomials over F_2[X]</a>, Finite fields & Applications, 16 (2010) 163-174.

%F (see PARI code)

%F a(p) = (2^(p-1)-1)/3p = A096060(n) for all primes p = prime(n) >= 5, n >= 3: A165921 o A000040 = A096060 on the domain [3..oo) of that sequence. - _M. F. Hasler_, Sep 27 2018

%t L[n_, k_] := DivisorSum[GCD[n, k], MoebiusMu[#]*Binomial[n/#, k/#] &];

%t A165920[n_] := Sum[If[(n + k) ~Mod~ 3 == 1, L[n, k], 0], {k, 0, n}]/n;

%t A001037[n_] := If[n == 0, 1, DivisorSum[n, MoebiusMu[#]*2^(n/#) &]/n];

%t A000048[n_] := DivisorSum[n, Mod[#, 2]*(MoebiusMu[#]*2^(n/#)) &]/(2*n);

%t A165921[n_] := Module[{an},

%t If[n <= 2, Return[0]];

%t an = A001037[n];

%t If[Mod[n, 2] == 0, an -= 3*A000048[n/2]];

%t If[Mod[n, 3] == 0, an -= 2*A165920[n/3]];

%t an /= 6;

%t Return[an]

%t ];

%t Table[A165921[n], {n, 2, 50}] (* _Jean-François Alcover_, Dec 02 2015, adapted from _Joerg Arndt_'s PARI script *)

%o (PARI)

%o L(n, k)=sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d) );

%o A165920(n)=sum(k=0, n, if( (n+k)%3==1, L(n, k), 0 ) ) / n;

%o A001037(n)=if(n<1, n==0, sumdiv(n, d, moebius(d)*2^(n/d))/n);

%o A000048(n)=sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n);

%o A165921(n)= /* this sequence */

%o {

%o my(an);

%o if ( n<=2, return(0) );

%o an = A001037(n);

%o if (n%2==0, an -= 3*A000048(n/2) );

%o if (n%3==0, an -= 2*A165920(n/3) );

%o an /= 6;

%o return( an );

%o }

%o /* _Joerg Arndt_, Jul 12 2012 */

%o (PARI) A165921(n)=if(n>2,A001037(n)-if(!bittest(n,0),3*A000048(n\2))-if(n%3==0,2*A165920(n\3)))\6 \\ Based on _Joerg Arndt_'s code from Jul 12 2012. Take up-to-date code for other sequences from the respective record. - _M. F. Hasler_, Sep 27 2018

%Y A001037 is the enumeration by degree of the irreducible polynomials over GF(2), A000048 is the number of 3-elements orbits, A165920 is the number of 2-elements orbits.

%Y Cf. A011957.

%Y Cf. A096060 = A165921 o A000040 (on 3..oo), a subsequence of this sequence.

%K easy,nonn

%O 2,6

%A _Jean Francis Michon_, Philippe Ravache (philippe.ravache(AT)univ-rouen.fr), Sep 30 2009

%E Incorrect formula removed and more terms added by _Joerg Arndt_, Jul 12 2012