login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (7-4*7^n)/3.
3

%I #10 Apr 08 2016 03:10:06

%S 1,-7,-63,-455,-3199,-22407,-156863,-1098055,-7686399,-53804807,

%T -376633663,-2636435655,-18455049599,-129185347207,-904297430463,

%U -6330082013255,-44310574092799,-310174018649607,-2171218130547263,-15198526913830855,-106389688396815999

%N a(n) = (7-4*7^n)/3.

%H G. C. Greubel, <a href="/A165759/b165759.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8, -7).

%F a(n) = 7*a(n-1)-14, a(0)=1.

%F a(n) = 8*a(n-1) - 7*a(n-2), a(0)= 1, a(1)= -7, for n>1.

%F G.f.: (1-15x)/(1-8x+7x^2).

%F a(n) = Sum_{0<=k<=n} A112555(n,k)*(-8)^(n-k).

%F E.g.f.: (1/3)*(7*exp(x) - 4*exp(7*x)). - _G. C. Greubel_, Apr 07 2016

%t (7-4*7^Range[0,20])/3 (* or *) LinearRecurrence[{8,-7},{1,-7},30] (* _Harvey P. Dale_, Dec 21 2014 *)

%K easy,sign

%O 0,2

%A _Philippe Deléham_, Sep 26 2009

%E Corrected and extended by _Harvey P. Dale_, Dec 21 2014