Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Apr 07 2016 16:10:43
%S 1,8,-48,400,-3184,25488,-203888,1631120,-13048944,104391568,
%T -835132528,6681060240,-53448481904,427587855248,-3420702841968,
%U 27365622735760,-218924981886064,1751399855088528,-14011198840708208
%N a(n) = (8/9)*(2+7*(-8)^(n-1)).
%H G. C. Greubel, <a href="/A165748/b165748.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-7,8).
%F a(n) = (-8)*a(n-1) + 16 for n>=1, with a(0) = 1.
%F a(n) = 8*a(n-2) - 7*a(n-1), a(0)=1, a(1)=8.
%F G.f.: (1+15x)/(1+7x-8x^2).
%F a(n) = Sum_{0<=k<=n} A112555(n,k)*7^(n-k).
%F From _G. C. Greubel_, Apr 07 2016: (Start)
%F a(n) = -7*a(n-1) + 8*a(n-2).
%F E.g.f.: (1/9)*(16*exp(x) - 7*exp(-8*x)). (End)
%t Table[(8/9)*(2 + 7*(-8)^(n - 1)), {n, 0, 100}] or
%t LinearRecurrence[{-7,8}, {1,8}, 100] (* _G. C. Greubel_, Apr 07 2016 *)
%o (PARI) x='x+O('x^99); Vec((1+15*x)/(1+7*x-8*x^2)) \\ _Altug Alkan_, Apr 07 2016
%K easy,sign
%O 0,2
%A _Philippe Deléham_, Sep 26 2009