Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jul 31 2015 22:32:40
%S 13068,69264,241128,662640,1557660,3272688,6314664,11393808,19471500,
%T 31813200,50046408,76223664,112890588,163158960,230784840,320251728,
%U 436858764,586813968,777332520,1016740080,1314581148,1681732464
%N Seventh right hand column of triangle A165674
%C The recurrence relation leads to Pascal's triangle A007318, the a(n) formula to Wiggen's triangle A028421 and the o.g.f to Wood's polynomials A126671; see A165674.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 35, -35, 21, -7, 1).
%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7* a(n-6) + a(n-7)
%F a(n) = 720 + 3528*n + 4872*n^2 + 2940*n^3 + 875*n^4 + 126*n^5 +7*n^6
%F Gf(z) = (0*z^8 - 720*z^7 + 5160*z^6 - 16008*z^5 + 28092*z^4 - 30708*z^3 + 22212*z^2 - 13068*z)/(z-1)^7
%t LinearRecurrence[{7,-21,35,-35,21,-7,1},{13068,69264,241128,662640,1557660,3272688,6314664},30] (* _Harvey P. Dale_, Aug 24 2012 *)
%Y Cf. A165674, A007318, A028421, A126671.
%K easy,nonn
%O 1,1
%A _Johannes W. Meijer_, Oct 05 2009