Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jul 26 2024 21:16:31
%S 1,8,40,176,736,3008,12160,48896,196096,785408,3143680,12578816,
%T 50323456,201310208,805273600,3221159936,12884770816,51539345408,
%U 206157905920,824632672256,3298532786176,13194135339008,52776549744640
%N a(n) = (3*2^n - 2) * 2^n.
%C Binomial transform of A058481. Second binomial transform of (A082505 without initial term 0). Third binomial transform of A010686.
%C Partial sums are in A060867.
%C a(n) is the sum of the odd numbers taken progressively by moving through them by 2^n-tuples. a(0)=1; a(1) = 3+5=8; a(2) = 7+9+11+13 = 40; a(3) = 15+17+19+21+23+25+27+29 = 176; a(n) = sum_{k=0,1,..,A000225(n)} (A000225(n+1)+2*k). - _J. M. Bergot_, Dec 06 2014
%C The number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - _Robert Price_, May 23 2016
%H Vincenzo Librandi, <a href="/A165665/b165665.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-8).
%F a(n) = 6*a(n-1)-8*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
%F a(n) = 8*A010036(n-1) for n > 0.
%F G.f.: (2*x+1)/((1-2*x)*(1-4*x)).
%F E.g.f.: 3*e^(4*x) - 2*e^(2*x). - _Robert Israel_, Dec 15 2014
%t Table[(3*2^n-2)2^n,{n,0,30}] (* or *) LinearRecurrence[{6,-8},{1,8},30] (* _Harvey P. Dale_, Nov 18 2020 *)
%o (Magma) [ (3*2^n-2)*2^n: n in [0..23] ];
%o (PARI) a(n)=(3*2^n-2)*2^n \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A058481, A082505, A010686 (repeat 1, 5), A060867, A010036, A124647.
%K nonn,easy
%O 0,2
%A _Klaus Brockhaus_, Sep 24 2009