Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 May 20 2020 10:53:09
%S 1,0,0,0,1,5,1547,21609301,733351105935,42700033549946255,
%T 4073194598236125134140,613969628444792223023625238,
%U 141515621596238755267618266465449
%N Number of 7-regular graphs (septic graphs) on 2n vertices.
%C Because the triangle A051031 is symmetric, a(n) is also the number of (2n-8)-regular graphs on 2n vertices.
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a>
%H M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>
%H M. Meringer, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G">Fast generation of regular graphs and construction of cages</a>, J. Graph Theory 30 (2) (1999) 137-146.
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SepticGraph.html">Septic Graph</a>
%F Euler transformation of A014377.
%t A014377 = Cases[Import["https://oeis.org/A014377/b014377.txt", "Table"], {_, _}][[All, 2]];
%t (* EulerTransform is defined in A005195 *)
%t EulerTransform[Rest @ A014377] (* _Jean-François Alcover_, Dec 04 2019, updated Mar 18 2020 *)
%Y 7-regular simple graphs: A014377 (connected), A165877 (disconnected), this sequence (not necessarily connected).
%Y Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), this sequence (k=7), A180260 (k=8).
%K nonn,hard,more
%O 0,6
%A _Jason Kimberley_, Sep 22 2009
%E Cross-references edited by _Jason Kimberley_, Nov 07 2009 and Oct 17 2011
%E a(9)-a(11) from _Andrew Howroyd_, Mar 09 2020
%E a(12) from _Andrew Howroyd_, May 19 2020