login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n)=(5/3)*(1+2*(-5)^(n-1)).
1

%I #7 Jan 11 2022 12:43:05

%S 1,5,-15,85,-415,2085,-10415,52085,-260415,1302085,-6510415,32552085,

%T -162760415,813802085,-4069010415,20345052085,-101725260415,

%U 508626302085,-2543131510415,12715657552085,-63578287760415

%N a(n)=(5/3)*(1+2*(-5)^(n-1)).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-4,5).

%F a(n)=(-5)*a(n-1)+10 with a(0)=1. a(0)=1, a(1)=5, a(n)=5*a(n-2)-4*a(n-1). G.f.: (1+9x)/(1+4x-5x^2). a(n)= Sum_{k, 0<=k<=n} A112555(n,k)*4^(n-k).

%t LinearRecurrence[{-4,5},{1,5},30] (* _Harvey P. Dale_, Nov 28 2015 *)

%Y Cf. A083217, A084247, A165553, A165622

%K easy,sign

%O 0,2

%A _Philippe Deléham_, Sep 22 2009