login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n which avoid the patterns 4321 and 3142.
2

%I #22 Sep 08 2022 08:45:48

%S 1,1,2,6,22,86,338,1314,5046,19190,72482,272530,1021734,3823622,

%T 14293234,53394370,199382550,744348822,2778471490,10370520178,

%U 38705706374,144456761766,539130777874,2012086272674,7509256255862,28025026831158,104591035618146

%N Number of permutations of length n which avoid the patterns 4321 and 3142.

%H Colin Barker, <a href="/A165530/b165530.txt">Table of n, a(n) for n = 0..1000</a>

%H Darla Kremer and Wai Chee Shiu, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00042-6">Finite transition matrices for permutations avoiding pairs of length four patterns</a>, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.

%H V. Vatter, <a href="https://arxiv.org/abs/0911.2683">Finding regular insertion encodings for permutation classes</a>, arXiv:0911.2683 [math.CO], 2009.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4">Permutation classes avoiding two patterns of length 4</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-21,20,-4).

%F G.f.: (1 - x)*(1 - 3*x)^2 / ((1 - 2*x)^2*(1 - 4*x + x^2)).

%F From _Colin Barker_, Oct 31 2017: (Start)

%F a(n) = (1/18)*(2*(3*2^n - (-3+sqrt(3))*(2+sqrt(3))^n + (2-sqrt(3))^n*(3+sqrt(3))) - 3*2^n*n).

%F a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 4*a(n-4) for n>3.

%F (End)

%e There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.

%t CoefficientList[Series[(1-x)*(1-3*x)^2/((1-2*x)^2*(1-4*x+x^2)), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 22 2018 *)

%o (PARI) Vec((1 - x)*(1 - 3*x)^2 / ((1 - 2*x)^2*(1 - 4*x + x^2)) + O(x^30)) \\ _Colin Barker_, Oct 31 2017

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1-3*x)^2/((1-2*x)^2*(1-4*x+x^2)))); // _G. C. Greubel_, Oct 22 2018

%K nonn,easy

%O 0,3

%A _Vincent Vatter_, Sep 21 2009

%E a(0)=1 prepended by _Alois P. Heinz_, Dec 09 2015