login
A165506
a(0) = 1, a(1) = 8, a(n) = 56*a(n-2) - a(n-1).
2
1, 8, 48, 400, 2288, 20112, 108016, 1018256, 5030640, 51991696, 229724144, 2681810832, 10182741232, 139998665360, 430234843632, 7409690416528, 16683460826864, 398259202498704, 536014603805680, 21766500736121744
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to -8.
FORMULA
G.f.: (1+9*x)/(1+x-56*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*7^k.
a(n) = (16*7^n-(-8)^n)/15. - Klaus Brockhaus, Sep 26 2009
E.g.f.: (16*exp(7*x) - exp(-8*x))/15. - G. C. Greubel, Oct 21 2018
EXAMPLE
a(20)=8250317076996336, a(21)=1210673724145821328, a(22)=-748655967834026512, a(23)=68546384520000020880, a(24)=-110471118718705505552,...
MATHEMATICA
LinearRecurrence[{-1, 56}, {1, 8}, 50] (* G. C. Greubel, Oct 21 2018 *)
CoefficientList[Series[-(1+9x)/(56x^2-x-1), {x, 0, 20}], x] (* Harvey P. Dale, Dec 20 2023 *)
PROG
(PARI) vector(50, n, n--; (16*7^n-(-8)^n)/15) \\ G. C. Greubel, Oct 21 2018
(Magma) [(16*7^n-(-8)^n)/15: n in [0..50]]; // G. C. Greubel, Oct 21 2018
CROSSREFS
Sequence in context: A165041 A165049 A013186 * A165748 A220174 A239888
KEYWORD
sign
AUTHOR
Philippe Deléham, Sep 21 2009
STATUS
approved