Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 07 2019 12:18:26
%S 2,2,6,2,8,2,10,4,10,4,10,6,14,2,4,4,18,6,14,4,12,8,22,6,16,6,20,6,2,
%T 8,18,6,28,4,20,4,30,12,14,0,14,6,28,10,28,6,32,10,16,8,26,10,26,6,24,
%U 8,36,10,28,8,26,10,30,8,0,10,32,14,18,12,0,14,44,6,32,6,38,0,32,8,22
%N The height at the 1/3 point of Jacobi-bridge, computed for 12n+7. a(n) = Sum_{i=0..(4n+2)} J(i,12n+7), where J(i,m) is the Jacobi symbol.
%C Conjecture: a(2n) = 2*A165605(2n) and a(2n+1) = (2/3)*A165605(2n+1). - _Antti Karttunen_, Oct 05 2009. (If true, then implies also the truth of conjecture in A165462.)
%H A. Karttunen, <a href="/A165460/b165460.txt">Table of n, a(n) for n = 0..21845</a>
%t Table[Sum[JacobiSymbol[i, 12n + 7], {i, 0, 4n + 2}], {n, 0, 100}] (* _Indranil Ghosh_, May 13 2017 *)
%o (MIT Scheme:)
%o (define (A165460 n) (let ((w (A017605 n))) (add (lambda (i) (jacobi-symbol i w)) 0 (/ (-1+ w) 3))))
%o (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
%o (define jacobi-symbol fix:jacobi-symbol)
%o (define (fix:jacobi-symbol p q) (if (not (and (fix:fixnum? p) (fix:fixnum? q) (fix:= 1 (fix:and q 1)))) (error "fix:jacobi-symbol: args must be fixnums, and 2. arg should be odd: " p q) (let loop ((p p) (q q) (s 0)) (cond ((fix:zero? p) 0) ((fix:= 1 p) (fix:- 1 (fix:and s 2))) ((fix:= 1 (fix:and p 1)) (loop (fix:remainder q p) p (fix:xor s (fix:and p q)))) (else (loop (fix:lsh p -1) q (fix:xor s (fix:xor q (fix:lsh q -1)))))))))
%o (PARI) a(n) = sum(i=0, 4*n + 2, kronecker(i, 12*n + 7)); \\ _Indranil Ghosh_, May 13 2017
%o (Python)
%o from sympy import jacobi_symbol as J
%o def a(n): return sum([J(i, 12*n + 7) for i in range(4*n + 3)]) # _Indranil Ghosh_, May 13 2017
%Y Cf. A165461, A165462, A165463, A165605.
%K nonn
%O 0,1
%A _Antti Karttunen_, Oct 06 2009