Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #1 Jun 01 2010 03:00:00
%S 1,3,4,8,15,34,69,152,332,751,1698,3905,9020,21051,49356,116505,
%T 276217,658091,1573835,3778152,9098915,21980209,53241777,129294912,
%U 314714273,767700735,1876437054,4595005570,11271747564,27695048780
%N Number a(n) of alternative sets of orthogonal contrasts available to partition variation between n levels of a categorical factor in analysis of variance, with each set described by a unique general linear model.
%C Each set has n-1 orthogonal contrasts.
%D Doncaster, C. P. & Davey, A. J. H. (2007) Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences. Cambridge: Cambridge University Press.
%H C. P. Doncaster, <a href="http://www.soton.ac.uk/~cpd/anovas/datasets/Contrast%20sets.htm">Contrast sets</a>
%H C. P. Doncaster, <a href="http://www.soton.ac.uk/~cpd/anovas/datasets/Orthogonal%20contrasts.htm">Orthogonal contrasts</a>
%H C. P. Doncaster & A. J. H. Davey, <a href="http://www.soton.ac.uk/~cpd/anovas/datasets/">Analysis of Variance and Covariance</a>
%F For n=5,6,7: a(n) = -mod(n,2)*a([n-mod{n,2}]/2) + sum_{k=3..n-1} a[k]
%F For n>7: a(n) = -mod(n,2)*a([n-mod{n,2}]/2) + 2*a(n-1) + b(n) - b(n-1)
%F where b(m) = 0^mod(log(m,2),1) + mod(m-1,2)*0.5*a([m-mod{m,2}]/2)*(a[{m-mod(m,2)}/2]-1)
%F + sum_{k=3..(m-1-mod[m-1,2])/2} a(m-k)*(a[k]-1)
%e A factor 'A' with n = 5 levels, has a(5) = 4 alternative sets of orthogonal
%e contrasts, each with n - 1 = 4 contrasts. The corresponding alternative
%e general linear models describing contrasts 'B', 'C', 'D', 'E' are:
%e B + C(B) + D(B) + E(D B)
%e B + C(B) + D(C B) + E(D C B)
%e B + C(B) + D(C B) + E(C B)
%e B + C(B) + D(B) + E(B)
%K nonn
%O 3,2
%A C. Patrick Doncaster (cpd(AT)soton.ac.uk), Sep 18 2009
%E Corrected and edited by C. P. Doncaster (cpd(AT)soton.ac.uk), Mar 02 2010