login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165433
A transform of the double factorial numbers A001147.
1
1, 1, 2, 3, 7, 14, 39, 97, 308, 897, 3139, 10304, 38997, 140893, 570002, 2230599, 9567979, 40091222, 181203603, 805962157, 3819522284, 17912075229, 88646095447, 435959031488, 2245454002137, 11530035000169, 61627679281154
OFFSET
0,3
COMMENTS
Hankel transform is A000178.
LINKS
FORMULA
G.f.: 1/(1-x-x^2-2x^4/(1-x-5x^2-12x^4/(1-x-9x^2-30x^4/(1-x-13x^2-56x^4/(1-.... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*(2k)!/(k!*2^k).
Conjecture: 2*a(n) -3*a(n-1) +(3-2*n)*a(n-2) +(2*n-3)*a(n-3)=0. - R. J. Mathar, Nov 14 2011
G.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 29 2013
a(n) ~ 2^(-1/2) * exp(sqrt(n)/2 - n/2 + 1/16) * n^(n/2) * (1 + 121/(192*sqrt(n))). - Vaclav Kotesovec, Apr 18 2024
MAPLE
a:=proc(n) add(binomial(n-k, k)*factorial(2*k)/(factorial(k)*2^k), k=0..floor(n/2)) end proc: seq(a(n), n=0..30); # Muniru A Asiru, Oct 20 2018
MATHEMATICA
Table[Sum[Binomial[n-k, k]*(2*k)!/(k!*2^k), {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Oct 20 2018 *)
PROG
(PARI) vector(30, n, n--; sum(k=0, floor(n/2), binomial(n-k, k)*(2*k)!/(k!*2^k))) \\ G. C. Greubel, Oct 20 2018
(Magma) [(&+[Binomial(n-k, k)*Factorial(2*k)/(Factorial(k)*2^k): k in [0.. Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Oct 20 2018
CROSSREFS
Sequence in context: A006785 A274538 A113182 * A238728 A271718 A222626
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 18 2009
STATUS
approved