login
A165373
Number of slanted n X 4 (i=1..n) X (j=i..4+i-1) 1..4 arrays with all 1s connected, all 2s connected, all 3s connected, all 4s connected, 1 in the upper left corner, 2 in the upper right corner, 3 in the lower left corner, and 4 in the lower right corner.
1
37, 305, 1409, 4569, 11449, 24225, 45585, 78729, 127369, 195729, 288545, 411065, 569049, 768769, 1017009, 1321065, 1688745, 2128369, 2648769, 3259289, 3969785, 4790625, 5732689, 6807369, 8026569, 9402705, 10948705, 12678009, 14604569
OFFSET
2,1
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - 10*a(n-2) +10*a(n-3) - 5*a(n-4) + a(n-5) for n>=8.
Conjectures from Colin Barker, Mar 25 2018: (Start)
G.f.: x^2*(37 + 120*x + 254*x^2 + 204*x^3 - 171*x^4 + 68*x^5) / (1 - x)^5.
a(n) = (1107 - 1060*n + 716*n^2 - 320*n^3 + 64*n^4) / 3 for n>2.
(End)
EXAMPLE
Some solutions for n=3:
...1.2.2.2.......1.1.2.2.......1.1.2.2.......1.1.2.2.......1.1.1.2....
.....2.3.2.2.......1.1.1.1.......4.4.4.4.......1.1.2.2.......2.2.2.4..
.......3.3.3.4.......3.1.1.4.......3.3.4.4.......3.3.3.4.......3.2.4.4
------
...1.1.2.2.......1.1.2.2.......1.1.1.2.......1.1.1.2.......1.1.1.2....
.....1.1.3.3.......1.2.2.2.......1.2.2.2.......4.4.4.4.......3.3.2.4..
.......3.3.4.4.......3.2.2.4.......3.2.4.4.......3.3.4.4.......3.2.4.4
CROSSREFS
Sequence in context: A211156 A217642 A197340 * A165292 A114785 A061014
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 17 2009
STATUS
approved