login
Integers of pseudo-averages of at least two consecutive nonprime numbers of the form (a+b+c+..+z)/z, which can be expressed in more than one way.
0

%I #5 Sep 03 2013 23:49:20

%S 6,7,10,11,12,13,14,15,16,17,20,22,25,26,27,28,29,30,31,32,33,34,35,

%T 36,37,39,40,41,44,45,46,47,48,49,51,52,53,54,56,57,58,59,60,61,62,63,

%U 64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87

%N Integers of pseudo-averages of at least two consecutive nonprime numbers of the form (a+b+c+..+z)/z, which can be expressed in more than one way.

%C (6+8+9+10+12+14+15+16+18)/18=6, (10+12+14+15+16+18+20+21)/21=6, (18+20+21+22+24+25+26)/26=6,..

%t lst={};Do[a=0;If[ !PrimeQ[q],Do[If[ !PrimeQ[n],m=n;a+=m;e=a/n;If[IntegerQ[e]&&a!=n,If[e<92,AppendTo[lst,e],Break[]]]],{n,q,6000}]],{q,5200}];lst=Sort@lst;lst1={3};lst2={}; Do[If[lst[[n]]==lst[[n+1]]||lst[[n]]==lst[[n-1]],AppendTo[lst2,lst[[n]]],AppendTo[lst1,lst[[n]]]],{n,1,Length[lst]-1,1}]; Union@lst2

%Y Cf. A165240, A165362

%K nonn,uned

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Sep 16 2009