login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1, a(1)=9, a(n)= 19*a(n-1)-81*a(n-2) for n>1.
2

%I #6 Nov 20 2020 17:08:30

%S 1,9,90,981,11349,136170,1667961,20661489,257463450,3218224941,

%T 40291734429,504866733930,6328837455921,79353706214169,

%U 995084584139610,12478956895304901,156498329695484709,1962672755694512490

%N a(0)=1, a(1)=9, a(n)= 19*a(n-1)-81*a(n-2) for n>1.

%C a(n)/a(n-1) tends to (19+sqrt(37))/2 = 12.5413812...

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (19,-81).

%F G.f.: (1-10x)/(1-19x+81x^2). a(n)= Sum_{k, 0<=k<=n}A165253(n,k)*9^(n-k).

%F a(n) = ((37-sqrt(37))*(19+sqrt(37))^n+(37+sqrt(37))*(19-sqrt(37))^n)/(74*2^n). [From _Klaus Brockhaus_, Sep 28 2009]

%t LinearRecurrence[{19,-81},{1,9},20] (* _Harvey P. Dale_, Nov 20 2020 *)

%K nonn

%O 0,2

%A _Philippe Deléham_, Sep 14 2009