The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165238 Hypotenuses c of primitive Pythagorean Triples (a,b,c) such that 2*a+1, 2*b+1 and 2*c+1 are primes. 2
 29, 65, 293, 485, 785, 1049, 1469, 1961, 2105, 3005, 3725, 3821, 4145, 4181, 4685, 4745, 5105, 5501, 6053, 6929, 6953, 7121, 7361, 7841, 8693, 9029, 9125, 10025, 12041, 12833, 12965, 13649, 14285, 14909, 15173, 15689, 15773, 15821, 16493 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Only one copy of c enters the sequence if multiple solutions exist, like with (a,b,c) = (3164,12573,12965) and (a,b,c) = (483,12956,12965). Subsequence of A020882. [R. J. Mathar, Mar 25 2010] LINKS Table of n, a(n) for n=1..39. Eric Weisstein, Pythagorean Triple, MathWorld EXAMPLE (a,b,c) = (20,21,29), (33,56,65), (44,483,485), (56,783,785), (68,285,293), (273,4136,4145). In the first case, for example, 2*20+1=41, 2*21+1 and 2*29+1 are all prime, which adds the half-hypotenuse 29 to the sequence. MATHEMATICA amax=6*10^4; lst={}; k=0; q=12!; Do[If[(e=((n+1)^2-n^2))>amax, Break[]]; Do[If[GCD[m, n]==1, a=m^2-n^2; If[PrimeQ[2*a+1], b=2*m*n; If[PrimeQ[2*b+1], If[GCD[a, b]==1, If[a>b, {a, b}={b, a}]; If[a>amax, Break[]]; c=m^2+n^2; If[PrimeQ[2*c+1], k++; AppendTo[lst, c]]]]]]; If[a>amax, Break[]], {m, n+1, 12!, 2}], {n, 1, q, 1}]; Union@lst CROSSREFS Cf. A020882, A020883, A165236, A165237 Sequence in context: A044131 A044512 A211492 * A201022 A367151 A118481 Adjacent sequences: A165235 A165236 A165237 * A165239 A165240 A165241 KEYWORD nonn AUTHOR Vladimir Joseph Stephan Orlovsky, Sep 09 2009 EXTENSIONS Comments moved to examples and definition clarified by R. J. Mathar, Mar 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)