login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 100*a(n-1) + 11^(n-1) for n>0, a(0)=0.
5

%I #23 Mar 15 2024 02:23:31

%S 0,1,111,11221,1123431,112357741,11235935151,1123595286661,

%T 112359548153271,11235955029685981,1123595505326545791,

%U 112359550558592003701,11235955056144512040711,1123595505617589632447821,112359550561793485956926031,11235955056179728345526186341

%N a(n) = 100*a(n-1) + 11^(n-1) for n>0, a(0)=0.

%C Generalization of A000225. - _Mark Dols_, Jan 28 2010

%H G. C. Greubel, <a href="/A165155/b165155.txt">Table of n, a(n) for n = 0..495</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1100).

%F G.f.: x/((1-11*x)*(1-100*x)). - _R. J. Mathar_, Nov 02 2016

%F E.g.f.: (1/89)*(exp(100*x) - exp(11*x)). - _G. C. Greubel_, Feb 09 2023

%e From _Mark Dols_, Jan 28 2010: (Start)

%e As triangle:

%e ........... 1

%e ......... 1 1 1

%e ....... 1 1 2 2 1

%e ..... 1 1 2 3 4 3 1

%e ... 1 1 2 3 5 7 7 4 1

%e . 1 1 2 3 5 9 3 5 1 5 1

%e 1 1 2 3 5 9 5 2 8 6 6 6 1

%e (Mirrored version of A162741) (End)

%t RecurrenceTable[{a[0]==0,a[n]==100a[n-1]+11^(n-1)},a,{n,40}] (* _Harvey P. Dale_, Feb 20 2016 *)

%o (Magma) [(1/89)*(100^n-11^n): n in [0..40]] // _Vincenzo Librandi_, Dec 05 2010

%o (SageMath) [(10^(2*n) - 11^n)/89 for n in range(41)] # _G. C. Greubel_, Feb 09 2023

%Y Cf. A000225, A021093, A094704, A162741, A164913.

%K nonn,easy

%O 0,3

%A _Mark Dols_, Sep 05 2009

%E a(0) prepended by _Bruno Berselli_, Oct 02 2015