Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 21 2023 18:34:58
%S 1,13,157,1825,20761,233173,2598517,28818985,318655921,3516744733,
%T 38764899277,426978842545,4700721921481,51735623710693,
%U 569285638838437,6263498473368505,68907978330073441,758054227491947053,8339061763439391997,91732936225029132865,1009085096265691207801
%N a(n) = (3*11^n - 7^n)/2.
%C Binomial transform of A165150. Inverse binomial transform of A165152.
%H Vincenzo Librandi, <a href="/A165151/b165151.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-77).
%F a(n) = 18*a(n-1) - 77*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
%F G.f.: (1 - 5*x)/((1 - 7*x)*(1 - 11*x)).
%F E.g.f.: exp(7*x)*(3*exp(4*x) - 1)/2. - _Stefano Spezia_, Mar 21 2023
%t Table[(3 11^n-7^n)/2,{n,0,20}] (* or *) LinearRecurrence[{18,-77},{1,13},20] (* _Harvey P. Dale_, Jan 28 2012 *)
%o (Magma) [ (3*11^n-7^n)/2: n in [0..17] ];
%Y Cf. A165150, A165152.
%K nonn,easy
%O 0,2
%A _Klaus Brockhaus_, Sep 15 2009