login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (3*7^n-3^n)/2.
2

%I #12 Apr 22 2024 09:42:11

%S 1,9,69,501,3561,25089,176109,1234221,8643921,60520569,423683349,

%T 2965901541,20761665081,145332718449,1017332217789,7121335090461,

%U 49849374331041,348945706410729,2442620203155429,17098342196928981

%N a(n) = (3*7^n-3^n)/2.

%C Partial sums are in A016138.

%C Binomial transform of A016129. Inverse binomial transform of A165148.

%H Vincenzo Librandi, <a href="/A165147/b165147.txt">Table of n, a(n) for n = 0..300</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-21).

%F a(n) = 10*a(n-1)-21*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

%F G.f.: (1-x)/((1-3*x)*(1-7*x)).

%t LinearRecurrence[{10, -21}, {1, 9}, 25] (* _Paolo Xausa_, Apr 22 2024 *)

%o (Magma) [ (3*7^n-3^n)/2: n in [0..19] ];

%Y Cf. A016138, A016129, A165148.

%K nonn,easy

%O 0,2

%A _Klaus Brockhaus_, Sep 15 2009