login
a(n) = (3*7^n-3^n)/2.
2

%I #12 Apr 22 2024 09:42:11

%S 1,9,69,501,3561,25089,176109,1234221,8643921,60520569,423683349,

%T 2965901541,20761665081,145332718449,1017332217789,7121335090461,

%U 49849374331041,348945706410729,2442620203155429,17098342196928981

%N a(n) = (3*7^n-3^n)/2.

%C Partial sums are in A016138.

%C Binomial transform of A016129. Inverse binomial transform of A165148.

%H Vincenzo Librandi, <a href="/A165147/b165147.txt">Table of n, a(n) for n = 0..300</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-21).

%F a(n) = 10*a(n-1)-21*a(n-2) for n > 1; a(0) = 1, a(1) = 9.

%F G.f.: (1-x)/((1-3*x)*(1-7*x)).

%t LinearRecurrence[{10, -21}, {1, 9}, 25] (* _Paolo Xausa_, Apr 22 2024 *)

%o (Magma) [ (3*7^n-3^n)/2: n in [0..19] ];

%Y Cf. A016138, A016129, A165148.

%K nonn,easy

%O 0,2

%A _Klaus Brockhaus_, Sep 15 2009