login
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.
0

%I #6 Nov 23 2016 18:32:52

%S 1,33,1056,33792,1081344,34603008,1107296256,35433480192,

%T 1133871365616,36283883682816,1161084277309968,37154696856634368,

%U 1188950298859192320,38046409545794715648,1217485104899048865792,38959523338645338587136

%N Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

%C The initial terms coincide with those of A170752, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (31, 31, 31, 31, 31, 31, 31, -496).

%F G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^8 -

%F 31*t^7 - 31*t^6 - 31*t^5 - 31*t^4 - 31*t^3 - 31*t^2 - 31*t + 1)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009