%I #10 Aug 28 2024 12:40:29
%S 1,1,1,5,3,2,4,3,1,1,7,4,1,3,3,1,1,5,5,4,3,3,3,3,1,6,4,2,3,1,3,3,3,4,
%T 1,2,1,3,3,3,1,5,9,3,3,3,3,3,3,1,1,3,3,3,1,3,3,3,1,1,12,1,3,3,3,3,3,3,
%U 3,3,3,3,3,3,3,3,3,3,1,3,3,3,1,2,5,1,3,1,3,1,3,3,3,3,3,3,3,3,3,1,6,2,3,3,3
%N Length of cycle mentioned in A165099.
%H Joseph Myers, <a href="/A165100/b165100.txt">Table of n, a(n) for n=1..8775</a>
%H Anthony Kay and Katrina Downes-Ward, <a href="https://arxiv.org/abs/2408.12257">Fixed Points and Cycles of the Kaprekar Transformation: 2. Even bases</a>, arXiv:2408.12257 [math.CO], 2024. See p. 33.
%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>
%Y Cf. A165090, A165099, A165096, A165098, A165102, A165109.
%Y In other bases: A000012 (base 2), A165003 (base 3), A165022 (base 4), A165042 (base 5), A165061 (base 6), A165081 (base 7), A165120 (base 9), A164719 (base 10).
%K base,nonn
%O 1,4
%A _Joseph Myers_, Sep 04 2009