login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Consider the base-8 Kaprekar map n->K(n) defined in A165090. Sequence gives least elements of each cycle, including fixed points.
13

%I #8 Aug 28 2024 13:46:47

%S 0,21,252,1022,1589,17892,21483,102837,147420,213402,1445787,1707930,

%T 1711962,6589877,13667738,16092433,76545756,93093147,110132442,

%U 111443346,421817781,874802586,878996762,1029991697,1068263553

%N Consider the base-8 Kaprekar map n->K(n) defined in A165090. Sequence gives least elements of each cycle, including fixed points.

%C Initial terms in base 8: 0, 25, 374, 1776, 3065, 42744, 51753, 310665, 437734, 640632.

%H Joseph Myers, <a href="/A165099/b165099.txt">Table of n, a(n) for n=1..8775</a>

%H Anthony Kay and Katrina Downes-Ward, <a href="https://arxiv.org/abs/2408.12257">Fixed Points and Cycles of the Kaprekar Transformation: 2. Even bases</a>, arXiv:2408.12257 [math.CO], 2024. See p. 33.

%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>

%Y Union of A165094 and A165101. Cf. A165090, A165100, A165095, A165097, A165108, A165103.

%Y In other bases: A163205 (base 2), A165002 (base 3), A165021 (base 4), A165041 (base 5), A165060 (base 6), A165080 (base 7), A165119 (base 9), A164718 (base 10).

%K base,nonn

%O 1,2

%A _Joseph Myers_, Sep 04 2009