login
Consider the base-6 Kaprekar map x->K(x) described in A165051. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n
7

%I #4 Mar 30 2012 17:28:43

%S 0,4305,16840

%N Consider the base-6 Kaprekar map x->K(x) described in A165051. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n

%C Known values (to 100 base-6 digits):

%C a(1) = 0 (base 10) = 0 (base 6)

%C a(2) = 4305 (base 10) = 31533 (base 6)

%C a(3) = 16840 (base 10) = 205544 (base 6)

%C a(6) = 430 (base 10) = 1554 (base 6)

%C a(7) = 895275 (base 10) = 31104443 (base 6)

%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>

%Y Cf. A165051, A165055, A165056, A165058, A165060, A165062.

%Y In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

%K base,nonn,bref

%O 1,2

%A _Joseph Myers_, Sep 04 2009