%I #12 Aug 28 2024 12:40:54
%S 1,1,6,2,1,3,1,1,1,2,7,2,1,2,1,1,2,2,1,1,2,1,2,1,1,2,1,1,2,2,2,2,2,1,
%T 2,1,2,1,2,1,2,2,1,1,2,2,1,2,2,2,1,2,1,1,2,1,2,1,2,1,2,2,2,1,2,2,2,1,
%U 2,2,1,2,2,2,1,2,1,1,2,2,2,2,1,2,1,1,2,2,2,1,1,2,2,2,1,2,2,2,2,1,2,2,1,2,2
%N Length of cycle mentioned in A165060.
%H Joseph Myers, <a href="/A165061/b165061.txt">Table of n, a(n) for n=1..23045</a>
%H Anthony Kay and Katrina Downes-Ward, <a href="https://arxiv.org/abs/2408.12257">Fixed Points and Cycles of the Kaprekar Transformation: 2. Even bases</a>, arXiv:2408.12257 [math.CO], 2024. See p. 27.
%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>
%Y Cf. A165051, A165060, A165057, A165059, A165063, A165070.
%Y In other bases: A000012 (base 2), A165003 (base 3), A165022 (base 4), A165042 (base 5), A165081 (base 7), A165100 (base 8), A165120 (base 9), A164719 (base 10).
%K base,nonn
%O 1,3
%A _Joseph Myers_, Sep 04 2009