%I #7 Sep 21 2022 13:28:12
%S 0,8,48,392,1992,7488,53712,249992,1831056,6249992,45781056,48217776,
%T 170312312,1144531056,1205467776,1217651376,4514058432,4576557032,
%U 22460937432,28613281056,28671874056,30136717776,30441401376
%N Consider the base-5 Kaprekar map n->K(n) defined in A165032. Sequence gives least elements of each cycle, including fixed points.
%C Initial terms in base 5: 0, 13, 143, 3032, 30432, 214423, 3204322, 30444432, 432043211, 3044444432.
%H Joseph Myers, <a href="/A165041/b165041.txt">Table of n, a(n) for n=1..15716</a>
%H Anthony Kay and Katrina Downes-Ward, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Kay/kay5.html">Fixed Points and Cycles of the Kaprekar Transformation: 1. Odd Bases</a>, Journal of Integer Sequences, Vol. 25 (2022), Article 22.6.7.
%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>
%Y Union of A165036 and A165043. Cf. A165032, A165042, A165037, A165039, A165049, A165045.
%Y In other bases: A163205 (base 2), A165002 (base 3), A165021 (base 4), A165060 (base 6), A165080 (base 7), A165099 (base 8), A165119 (base 9), A164718 (base 10).
%K base,nonn
%O 1,2
%A _Joseph Myers_, Sep 04 2009