%I #7 Sep 21 2022 13:27:50
%S 1,2,1,3,2,1,1,3,2,1,4,1,3,1,3,2,1,2,1,5,3,1,3,2,1,1,2,1,6,5,3,1,3,2,
%T 1,3,1,2,1,4,2,1,6,5,3,1,3,2,1,5,3,1,2,1,4,4,4,2,1,6,5,3,1,3,2,1,3,1,
%U 3,1,2,1,9,4,4,4,2,1,6,5,3,1,3,2,1,2,3,1,3,1,2,1,6,3,1,9,4,4,4,2,1,6,5,3,1
%N Length of cycle mentioned in A165002
%H Joseph Myers, <a href="/A165003/b165003.txt">Table of n, a(n) for n=1..23340</a>
%H Anthony Kay and Katrina Downes-Ward, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Kay/kay5.html">Fixed Points and Cycles of the Kaprekar Transformation: 1. Odd Bases</a>, Journal of Integer Sequences, Vol. 25 (2022), Article 22.6.7.
%H <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a>
%Y Cf. A164993, A165002, A164999, A165001, A165005, A165011.
%Y In other bases: A000012 (base 2), A165022 (base 4), A165042 (base 5), A165061 (base 6), A165081 (base 7), A165100 (base 8), A165120 (base 9), A164719 (base 10).
%K base,nonn
%O 1,2
%A _Joseph Myers_, Sep 04 2009