login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of palindromic structures using a maximum of ten different symbols.
3

%I #18 Mar 24 2024 08:00:56

%S 1,1,1,2,2,5,5,15,15,52,52,203,203,877,877,4140,4140,21147,21147,

%T 115975,115975,678569,678569,4213530,4213530,27641927,27641927,

%U 190829797,190829797,1381367941,1381367941,10448276360,10448276360,82285618467

%N a(n) is the number of palindromic structures using a maximum of ten different symbols.

%C a(n) is the number of palindromic word structures of length n using 10-ary alphabet.

%C a(n) is the same as taking every element twice from A164864.

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (1, 45, -45, -861, 861, 9135, -9135, -58674, 58674, 233100, -233100, -557864, 557864, 732960, -732960, -403200, 403200).

%F G.f.: (148329*x^17 -403200*x^16 -210253*x^15 +732960*x^14 +122692*x^13 -557864*x^12 -38365*x^11 +233100*x^10 +6965*x^9 -58674*x^8 -736*x^7 +9135*x^6 +42*x^5 -861*x^4 -x^3 +45*x^2 -1) / ((x -1)*(2*x -1)*(2*x +1)*(2*x^2 -1)*(3*x^2 -1)*(5*x^2 -1)*(6*x^2 -1)*(7*x^2 -1)*(8*x^2 -1)*(10*x^2 -1)). [_Colin Barker_, Dec 05 2012]

%e Four-digit palindromes have two different digits structures: aaaa and abba. Hence a(4)=2.

%Y Cf. A056470, A056471, A164864, A188164.

%K nonn,easy

%O 0,4

%A _Tanya Khovanova_, Aug 30 2009