login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164900 a(2n) = 4*n*(n+1) + 3; a(2n+1) = 2*n*(n+2) + 3. 2
3, 3, 11, 9, 27, 19, 51, 33, 83, 51, 123, 73, 171, 99, 227, 129, 291, 163, 363, 201, 443, 243, 531, 289, 627, 339, 731, 393, 843, 451, 963, 513, 1091, 579, 1227, 649, 1371, 723, 1523, 801, 1683, 883, 1851, 969, 2027, 1059, 2211, 1153 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) = largest odd divisor of A059100(n+1). Proof: Observe that a(2n) = A059100(2n+1) and a(2n+1) = (A059100(2n+2))/2 and note that (A059100(m))/2 is odd for even m. - Jeremy Gardiner, Aug 25 2013

a(n) is also the denominator of the (n+1)-st largest circle in a special case of the Pappus chain inspired by the Yin-Yang symbol. See illustration in the links. - Kival Ngaokrajang, Jun 20 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Kival Ngaokrajang, Illustration of initial terms

Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1)

FORMULA

a(2n) = A164897(n); a(2n+1) = A058331(n+1).

a(n) = A164845(n-1)/A026741(n), n>0.

G.f.: ( -3-3*x-2*x^2-3*x^4-x^5 ) / ( (x-1)^3*(1+x)^3 ). - R. J. Mathar, Jan 21 2011

a(n) = ((-1)^n+3)*(n^2+2*n+3)/4. - Bruno Berselli, Jan 21 2011

PROG

(MAGMA) [((-1)^n+3)*(n^2+2*n+3)/4: n in [0..50]]; // Vincenzo Librandi, Aug 07 2011

(PARI) vector(100, n, n--; (1/4)*((-1)^n+3)*(n^2+2*n+3)) \\ Derek Orr, Jun 27 2015

CROSSREFS

Sequence in context: A309692 A107229 A302510 * A304082 A122167 A095019

Adjacent sequences:  A164897 A164898 A164899 * A164901 A164902 A164903

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Aug 30 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 17:43 EDT 2020. Contains 337393 sequences. (Running on oeis4.)