login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Base 10 representation of the string formed by appending primes in base 2.
1

%I #15 May 13 2013 01:54:10

%S 2,11,93,751,12027,192445,6158257,197064243,6306055799,201793785597,

%T 6457401139135,413273672904677,26449515065899369,1692768964217559659,

%U 108337213709923818223,6933581677435124366325,443749227355847959444859,28399950550774269404471037

%N Base 10 representation of the string formed by appending primes in base 2.

%C The subsequence of primes begins: 2, 11, 751. [_Jonathan Vos Post_, May 26 2010]

%H Charles R Greathouse IV, <a href="/A164893/b164893.txt">Table of n, a(n) for n = 1..335</a> (all terms under 1000 digits)

%F a(n) = A154703(n) [converted from base 2 to base 10]. [_Jonathan Vos Post_, May 26 2010]

%e The primes in base 2 (10, 11, 101, 111,...) concatenated by appending give the first four binary terms 10, 1011, 1011101, 1011101111; or 2, 11, 93, 751 base 10.

%t nn=20;With[{b2p=IntegerDigits[#,2]&/@Prime[Range[nn]]},Table[ FromDigits[ Flatten[ Take[b2p,n]],2],{n,nn}]] (* _Harvey P. Dale_, Mar 26 2013 *)

%o (PARI) list(n)=my(p=primes(n),s);vector(n,i,s=s<<#binary(p[i])+p[i]) \\ _Charles R Greathouse IV_, Mar 26 2013

%Y Cf. A000040, A004676, A007088, A100003, A154703.

%K base,easy,nonn

%O 1,1

%A _Gil Broussard_, Aug 29 2009

%E Corrected by _Harvey P. Dale_, Mar 26 2013