Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Jan 05 2025 19:51:39
%S 1,43,337,2395,16801,117643,823537,5764795,40353601,282475243,
%T 1977326737,13841287195,96889010401,678223072843,4747561509937,
%U 33232930569595,232630513987201,1628413597910443,11398895185373137
%N a(n) = 7^n-6.
%C Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m (n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m (n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers.
%D Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem. Vol. 4, No. 2, Dec 1978, pp. 277-302.
%D Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
%D Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134)
%H Vincenzo Librandi, <a href="/A164783/b164783.txt">Table of n, a(n) for n = 1..1000</a>
%H Daniel Minoli, <a href="http://dx.doi.org/10.1090/S0025-5718-1980-0559206-9">Issues In Non-Linear Hyperperfect Numbers</a>, Mathematics of Computation, Vol. 34, No. 150, April 1980, pp. 639-645.
%H D. Minoli, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/19-1/minoli.pdf">Structural Issues For Hyperperfect Numbers</a>, Fibonacci Quarterly, Feb. 1981, Vol. 19, No. 1, pp. 6-14.
%H D. Minoli and Robert Bear, <a href="http://www.pme-math.org/journal/issues/PMEJ.Vol.6.No.3.pdf">Hyperperfect Numbers</a>, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157.
%H Daniel Minoli and W. Nakamine, <a href="http://dx.doi.org/10.1109/ICASSP.1980.1170906">Mersenne Numbers Rooted On 3 For Number Theoretic Transforms</a>, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-7).
%F a(n) = 7*a(n-1)+36 with n>1, a(1)=1. - _Vincenzo Librandi_, Nov 30 2010
%F G.f.: x*(1+35*x)/((1-x)*(1-7*x)). - _Colin Barker_, Mar 08 2012
%F a(n) = 8*a(n-1) - 7*a(n-2) for n>2, a(1)=1, a(2)=43. - _Vincenzo Librandi_, Feb 06 2013
%F a(n) = A000420(n) - 6 for n>0. - _Michel Marcus_, Aug 31 2013
%t CoefficientList[Series[(1 + 35 x)/((1-x) (1-7 x)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Feb 06 2013 *)
%t NestList[7 # + 36 & , 1, 18] (* _Bruno Berselli_, Feb 06 2013 *)
%t LinearRecurrence[{8,-7},{1,43},30] (* _Harvey P. Dale_, Nov 27 2014 *)
%o (Magma) [7^n-6: n in [1..30]]; // _Vincenzo Librandi_, Feb 06 2013
%o (PARI) a(n)=7^n-6 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y Cf. A000420.
%Y Cf. A014232, A014224, A135535, A059266.
%K nonn,easy,changed
%O 1,2
%A Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009
%E More terms a(8)-a(19) from _Vincenzo Librandi_, Oct 29 2009