login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.
8

%I #24 Sep 07 2024 15:40:32

%S 1,15,163,1577,14417,127719,1110467,9543745,81420481,691330719,

%T 5851867459,49433600633,417032638289,3515077706295,29610553888547,

%U 249339102243793,2099051398651393,17667781775661231,148693529122641763

%N a(n) = 14*a(n-1) - 47*a(n-2), for n > 1, with a(0) = 1, a(1) = 15.

%C Binomial transform of A164598. Seventh binomial transform of A164587. Inverse binomial transform of A081185 without initial term 0.

%C This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 -2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 -2)*x^2) and have a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - _G. C. Greubel_, Mar 11 2021

%H G. C. Greubel, <a href="/A164599/b164599.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..100 from Vincenzo Librandi)

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-47).

%F a(n) = ((1+4*sqrt(2))*(7+sqrt(2))^n + (1-4*sqrt(2))*(7-sqrt(2))^n)/2.

%F G.f.: (1+x)/(1-14*x+47*x^2).

%F E.g.f.: exp(7*x)*(cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x)). - _G. C. Greubel_, Aug 11 2017

%F From _G. C. Greubel_, Mar 11 2021: (Start)

%F a(n) = A147958(n) + 8*A081184(n).

%F a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*6^(n-k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

%p m:=30; S:=series( (1+x)/(1-14*x+47*x^2), x, m+1):

%p seq(coeff(S, x, j), j=0..m); # _G. C. Greubel_, Mar 11 2021

%t LinearRecurrence[{14,-47}, {1,15}, 30] (* _G. C. Greubel_, Aug 11 2017 *)

%o (Magma) [ n le 2 select 14*n-13 else 14*Self(n-1)-47*Self(n-2): n in [1..30] ];

%o (PARI) my(x='x+O('x^30)); Vec((1+x)/(1-14*x+47*x^2)) \\ _G. C. Greubel_, Aug 11 2017

%o (Sage)

%o def A164599_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+x)/(1-14*x+47*x^2) ).list()

%o A164599_list(30) # _G. C. Greubel_, Mar 11 2021

%Y Sequences in the class a(n, m): A164298 (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), this sequence (m=6), A081185 (m=7), A164600 (m=8).

%Y Cf. A002203, A081184, A081185, A147958, A164587.

%K nonn

%O 0,2

%A _Klaus Brockhaus_, Aug 17 2009