Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 04 2023 12:59:13
%S 1,15,89,519,3025,17631,102761,598935,3490849,20346159,118586105,
%T 691170471,4028436721,23479449855,136848262409,797610124599,
%U 4648812485185,27095264786511,157922776233881,920441392616775
%N a(n) = 6*a(n-1) - a(n-2) for n > 1; a(0) = 1, a(1) = 15.
%C Binomial transform of A164540. Third binomial transform of A164675. Inverse binomial transform of A164542.
%H Vincenzo Librandi, <a href="/A164541/b164541.txt">Table of n, a(n) for n = 0..155</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6, -1).
%F a(n) = 6*a(n-1) - a(n-2) for n > 1; a(0) = 1, a(1) = 15.
%F G.f: (1+9*x)/(1-6*x+x^2).
%F a(n) = ((1+3*sqrt(2))*(3+2*sqrt(2))^n + (1-3*sqrt(2))*(3-2*sqrt(2))^n)/2.
%t LinearRecurrence[{6,-1},{1,15},20] (* _Harvey P. Dale_, Feb 04 2023 *)
%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+3*r)*(3+2*r)^n+(1-3*r)*(3-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 20 2009
%Y Cf. A164540, A164675, A164542.
%K nonn,easy
%O 0,2
%A Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
%E Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 20 2009