login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 5, a(1) = 28.
3

%I #13 Sep 08 2022 08:45:47

%S 5,28,154,840,4564,24752,134120,726432,3933776,21300160,115328416,

%T 624425088,3380802880,18304471808,99104534144,536573667840,

%U 2905125864704,15728975567872,85160042437120,461074681546752

%N a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 5, a(1) = 28.

%C Binomial transform of A102285 without initial term 1. Fourth binomial transform of A164682. Inverse binomial transform of A164538.

%H Vincenzo Librandi, <a href="/A164537/b164537.txt">Table of n, a(n) for n = 0..158</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8, -14).

%F a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 5, a(1) = 28.

%F G.f.: (5-12*x)/(1-8*x+14*x^2).

%F a(n) = ((5+4*sqrt(2))*(4+sqrt(2))^n + (5-4*sqrt(2))*(4-sqrt(2))^n)/2.

%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+4*r)*(4+r)^n+(5-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 21 2009

%Y Cf. A102285, A164682, A164538.

%K nonn,easy

%O 0,1

%A Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

%E Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 21 2009