login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164522
Numbers k such that sigma_odd(k) = sigma_odd(k+1), where sigma_odd(k) is the sum of the odd divisors of k (A000593).
5
1, 27089, 115289, 233729, 2529090, 2880989, 14059709, 17192909, 17540250, 18693990, 34902630, 54722249, 58517910, 82200689, 83087730, 92991990, 93623250, 93862230, 96578369, 111681990, 112244369, 155120129, 206450369, 269626769, 293182469, 303206310, 324764910
OFFSET
1,2
LINKS
Daeyeoul Kim, Nazli Yildiz Ikikardes, Yan Li, and Lianrong Ma, On the Problem sigma_od(n) = sigma_od(n+ 1), Filomat, Vol. 33, No. 2 (2019), pp. 543-559.
EXAMPLE
27089 is in the sequence since A000593(27089) = A000593(27089 + 1) = 27456.
MATHEMATICA
f[p_, e_] := If[p == 2, 1, (p^(e+1)-1)/(p-1)]; s[1] = 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); s1=0; seq={}; Do[s2 = s[n]; If[s2 == s1, AppendTo[ seq, n-1]]; s1 = s2, {n, 1, 10^6}]; seq
PROG
(Magma) v:=[&+[d:d in Divisors(m)|IsOdd(d)] :m in [1..5000000]]; [k:k in [1..#v-1]| v[k] eq v[k+1]]; // Marius A. Burtea, Aug 12 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 12 2019
STATUS
approved