login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of binary strings of length n with no substrings equal to 0011 or 0101.
2

%I #25 Nov 20 2017 05:39:56

%S 1,2,4,8,14,24,41,68,111,180,289,460,728,1146,1795,2800,4352,6742,

%T 10414,16044,24659,37818,57885,88440,134899,205448,312448,474548,

%U 719861,1090734,1650908,2496260,3770910,5691360,8582653,12932512,19472363,29298540,44053525

%N Number of binary strings of length n with no substrings equal to 0011 or 0101.

%H Alois P. Heinz, <a href="/A164406/b164406.txt">Table of n, a(n) for n = 0..2000</a> (first 500 terms from R. H. Hardin)

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-2,0,-1).

%F G.f.: (x^2+1)/(x^3+x-1)^2. - _R. J. Mathar_, Nov 30 2011

%F a(n) = Sum_{i=0..floor((n+1)/2)} (n+1-2i) * C(n+1-2i,i). - _Wesley Ivan Hurt_, Nov 17 2017

%t LinearRecurrence[{2,-1,2,-2,0,-1}, {14,24,41,68,111,180}, 50] (* _G. C. Greubel_, Sep 19 2017 *)

%o (PARI) x='x+O('x^50); Vec((x^2+1)/(x^3+x-1)^2) \\ _G. C. Greubel_, Sep 19 2017

%K nonn,easy

%O 0,2

%A _R. H. Hardin_, Aug 14 2009

%E Edited by _Alois P. Heinz_, Oct 27 2017