The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164405 Number of binary strings of length n with no substrings equal to 0010 or 1100. 1
 1, 2, 4, 8, 14, 24, 41, 70, 120, 207, 358, 620, 1074, 1860, 3220, 5573, 9644, 16688, 28877, 49970, 86472, 149640, 258954, 448124, 775485, 1341986, 2322320, 4018795, 6954558, 12034920, 20826530, 36040488, 62368376, 107929017, 186772104, 323210752 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS R. H. Hardin, Table of n, a(n) for n = 0..500 Index entries for linear recurrences with constant coefficients, signature (2,0,-1,0,0,1). FORMULA a(n) = 2*a(n-1) - a(n-3) + a(n-6). - Andrew Howroyd, Feb 14 2018 G.f.: (1 + x^3)/(1 - 2*x + x^3 - x^6). - R. J. Mathar, Nov 30 2011 MAPLE f:= gfun:-rectoproc({a(n) = 2*a(n-1)-a(n-3)+a(n-6), seq(a(i)=[14, 24, 41, 70, 120, 207][i-3], i=4..9)}, a(n), remember): map(f, [\$0..35]); # Robert Israel, Sep 19 2017 MATHEMATICA LinearRecurrence[{2, 0, -1, 0, 0, 1}, {1, 2, 4, 8, 14, 24}, 50] (* G. C. Greubel, Sep 19 2017 *) PROG (PARI) Vec((1 + x^3)/(1 - 2*x + x^3 - x^6) + O(x^40)) \\ G. C. Greubel, Sep 19 2017 CROSSREFS Sequence in context: A164174 A164396 A164400 * A164163 A164395 A164160 Adjacent sequences:  A164402 A164403 A164404 * A164406 A164407 A164408 KEYWORD nonn AUTHOR R. H. Hardin, Aug 14 2009 EXTENSIONS a(0)-a(3) prepended by Andrew Howroyd, Feb 14 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 06:07 EST 2021. Contains 349627 sequences. (Running on oeis4.)