Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 04 2022 08:33:27
%S 1,1,1,1,0,1,1,1,-1,1,1,0,0,-1,1,1,1,1,0,1,1,1,0,-1,0,-1,1,1,1,1,0,1,
%T 0,-1,1,1,1,0,1,-1,0,0,-1,1,1,1,1,-1,0,1,0,-1,-1,1,1,1,0,0,0,1,0,0,-1,
%U 1,1,1,1,1,1,1,-1,1,0,0,-1,1,1,1,1,0,-1,-1,0,1,0,0,-1,-1,1,1,1
%N Triangle T(n,k) read by rows: T(n,k) = 1 if (n mod k) <= 2*k/9, -1 if 2*k/9 < (n mod k) <= 4*k/9, otherwise 0.
%H G. C. Greubel, <a href="/A164381/b164381.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 0, 1;
%e 1, 1, -1, 1;
%e 1, 0, 0, -1, 1;
%e 1, 1, 1, 0, 1, 1;
%e 1, 0, -1, 0, -1, 1, 1;
%e 1, 1, 0, 1, 0, -1, 1, 1;
%e 1, 0, 1, -1, 0, 0, -1, 1, 1;
%e 1, 1, -1, 0, 1, 0, -1, -1, 1, 1;
%t T[n_, k_]:= If[Mod[n,k]/k<=2/9, 1, If[2/9<Mod[n,k]/k<=4/9, -1, 0]];
%t Table[T[n, k], {n,12}, {k,n}]//Flatten
%o (Magma)
%o function A164381(n,k)
%o if (n mod k) le 2*k/9 then return 1;
%o elif 2*k/9 lt (n mod k) and (n mod k) le 4*k/9 then return -1;
%o else return 0;
%o end if; return A164381;
%o end function;
%o [A164381(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Dec 03 2022
%o (SageMath)
%o def A164381(n,k):
%o if ((n%k)/k <= 2/9): return 1
%o elif (2/9 < (n%k)/k <= 4/9): return -1
%o else: return 0
%o flatten([[A164381(n,k) for k in range(1,n+1)] for n in range(1,17)]) # _G. C. Greubel_, Dec 03 2022
%Y Cf. A051731.
%K sign,less,tabl
%O 0,1
%A _Roger L. Bagula_ and _Mats Granvik_, Aug 14 2009
%E Edited by _G. C. Greubel_, Dec 03 2022