login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Conway's creeper sequence
3

%I #14 Feb 08 2020 20:42:39

%S 12334444,55667777,123334444,556667777,1233334444,5566667777,

%T 12333334444,55666667777,123333334444,556666667777,1233333334444,

%U 5566666667777,12333333334444,55666666667777,123333333334444

%N Conway's creeper sequence

%C Trajectory of 12334444 under the RATS function A036839.

%C John Conway calls this sequence "the creeper" and conjectures that the RATS trajectory of every n >= 1 eventually enters a cycle or the creeper. David Wilson confirms this conjecture for n <= 10^10.

%C Continues with the obvious digital pattern.

%C Since a(n+2) = a(n) except for an added digit, this sequence can be described as a quasi-cycle of period 2 with smallest element 12334444. This is how it is treated in related sequences such as A161590, A161592 and A161593.

%H Reinhard Zumkeller, <a href="/A164338/b164338.txt">Table of n, a(n) for n = 1..100</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RATSSequence.html">RATS Sequence</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,11,0,-10).

%F a(n+2) = 10 a(n) - 9996 (n odd)

%F a(n+2) = 10 a(n) - 9993 (n even)

%F a(n+4) = 11 a(n+2) - 10 a(n)

%F a(n + 1) = A036839(a(n)). [_Reinhard Zumkeller_, Mar 14 2012]

%F G.f.: x*(-55677770*x^3 - 12344440*x^2 + 55667777*x + 12334444)/(10*x^4 - 11*x^2 + 1). - _Chai Wah Wu_, Feb 08 2020

%o (Haskell)

%o a164338 n = a164338_list !! (n-1)

%o a164338_list = iterate a036839 12334444

%o -- _Reinhard Zumkeller_, Mar 14 2012

%Y Cf. A036839 (RATS function), A161590, A161592, A161593.

%Y Cf. A114611, A114612.

%K base,easy,nonn

%O 1,1

%A _David W. Wilson_, Aug 13 2009