Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Nov 01 2024 12:41:34
%S 1,2,4,5,7,11,16,23,34,50,73,107,157,230,337,494,724,1061,1555,2279,
%T 3340,4895,7174,10514,15409,22583,33097,48506,71089,104186,152692,
%U 223781,327967,480659,704440,1032407,1513066,2217506,3249913,4762979,6980485,10230398
%N Number of binary strings of length n with no substrings equal to 000, 001, or 010.
%H Alois P. Heinz, <a href="/A164316/b164316.txt">Table of n, a(n) for n = 0..2000</a> (first 500 terms from R. H. Hardin)
%H Dominika Závacká, Cristina Dalfó, and Miquel Angel Fiol, <a href="https://ceur-ws.org/Vol-3792/paper19.pdf">Integer sequences from k-iterated line digraphs</a>, CEUR: Proc. 24th Conf. Info. Tech. - Appl. and Theory (ITAT 2024) Vol 3792, 156-161. See p. 161, Table 2.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1).
%F G.f.: -(2*x^2+x+1)/(x^3+x-1). - _R. J. Mathar_, Nov 28 2011
%F a(n) = 4 + Sum_{i=0..n-3} a(i) for n>2. - _Greg Dresden_, Jul 02 2021
%e All solutions for n=6: 101100 101101 101110 101111 011011 011100 011101 011110 011111 111011 110110 110111 111100 111101 111110 111111.
%t LinearRecurrence[{1, 0, 1}, {1, 2, 4}, 80] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2012, edited by _Greg Dresden_, Jul 02 2021 *)
%K easy,nonn
%O 0,2
%A _R. H. Hardin_, Aug 12 2009
%E Edited by _Alois P. Heinz_, Oct 11 2017